ARX homeodomain mutations abolish DNA binding and lead to a loss of transcriptional repression.
نویسندگان
چکیده
Mutations in the Aristaless-related homeobox (ARX) gene are one of the most frequent causes of X-linked intellectual disability (ID). Several missense mutations, clustered in the paired-type homeodomain of ARX, have been identified. These mutations lead to a range of phenotypes from X-linked lissencephaly with abnormal genitalia to seizure disorders without brain malformations including X-linked infantile spasms with ID (ISSX-ID) and X-linked myoclonic epilepsy with spasticity and ID (XMESID). The effect of these mutations on the DNA-binding and transcriptional activity has been evaluated. Luciferase reporter assays showed altered repression activity of ARX by all mutations, causing brain malformations and ISSX-ID phenotypes, but not by the P353L mutation implicated in a milder phenotype of XMESID. Similarly, transient overexpression of wild-type ARX repressed endogenous expression of known ARX targets, LMO1 and SHOX2, when measured by real-time quantitative polymerase chain reaction. Overall, the molecular consequence of missense mutations correlated well with the severity of the clinical phenotype. In all mutations tested, except P353L, the DNA binding was abolished. Electrophoretic mobility shift assay results were validated using chromatin immunoprecipitation following overexpression of normal and selected missense mutations. Unlike wild-type ARX and clinically less severe mutations, the mutations leading to severe clinical phenotypes were not able to specifically bind to DNA upstream of known, endogenous ARX-regulated genes, LMO1 and SHOX2. In conclusion, the missense mutations in the ARX homeodomain represent loss-of-function mutations, which lead to a reduced or complete loss of DNA binding and as a consequence, a loss of transcriptional repression.
منابع مشابه
Reciprocal effect of Waardenburg syndrome mutations on DNA binding by the Pax-3 paired domain and homeodomain.
The Pax-3 protein contains two DNA-binding domains, a paired domain and a homeodomain. Mutations in Pax-3 cause Waardenburg syndrome (WS) in humans and the mouse Splotch (Sp) phenotype. In the Sp-delayed mouse, a mutation in the Pax-3 paired domain (G9R) abrogates the DNA-binding activity of both the paired domain and the homeodomain, suggesting that they may functionally interact. To investiga...
متن کاملMutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division
BACKGROUND Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe m...
متن کاملHomeodomain Position 54 Specifies Transcriptional versus Translational
Hahn and Jäckle, 1996) of Drosophila as well as their Bicoid (BCD), the anterior determinant of Drosophila, vertebrate homologs (Blumberg et al., 1991; Simeone controls embryonic gene expression by transcriptional et al., 1993). activation and translational repression. Both functions Previous results have shown that the lysine at position require the homeodomain (HD), which recognizes DNA 50 of...
متن کاملSequence-specific transcriptional repression by KS1, a multiple-zinc-finger-Krüppel-associated box protein.
The vertebrate genome contains a large number of Krüppel-associated box-zinc finger genes that encode 10 or more C(2)-H(2) zinc finger motifs. Members of this gene family have been proposed to function as transcription factors by binding DNA through their zinc finger region and repressing gene expression via the KRAB domain. To date, however, no Krüppel-associated box-zinc finger protein (KRAB-...
متن کاملARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c.
Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2012